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Abstract In this paper a new algorithm of trajectory tracking based on closest radius
solution of the interval equations system is proposed. The design procedure is given
and applied to the pitch angle control of unmanned testing rocket with uncertain
parameters. The proposed algorithm gives a framework to design a control for a wide
range of different linear time-invariant processes with uncertain parameters and can
be implemented also in the case of non-convex problems. The algorithm gives the
analytical way of finding the nearly optimal solution of model reference trajectory
tracking in the case of general time-invariant systems with uncertain parameters and
can be used when optimization method fails due to the complexity of the problem.

Key words control · interval model · linear interval solution

1 Introduction

The problem of pitch angle control of the testing rocket (Japan Aerospace Ex-
ploration Agency, Institute of Space and Astronautical) becomes much more de-
manding when taking into account the changes of aerodynamic parameters. The
aerodynamic parameters which are not know exactly can also vary according to
the actual weather conditions and the speed of the rocket. The change of these
parameters causes a serious problem by the design of control which should be robust
in the whole range of parameter changes and should give an appropriate control
performance.

The problem of robust control design for the linear time-invariant systems with
uncertain parameters has received considerable attention in recent years. Various
design techniques have been presented. The methods where exact pole assignment
is introduced are shown in Harvey and Stein [10], Sebakhy [20] and Šiljak [21].
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Furuta and Kim [7], Kim and Lee [12] and Lee and Lee [13] proposed the feedback
controller which minimize a cost function subject to the requirements that the
closed-loop poles lies with in a specified region. In Haddad and Bernstein [9] the
modified Lyapunov function is solved to minimize an auxiliary performance index
which guaranties the upper bound of the quadratic cost function and guaranties
the specified region of the closed-loop poles. The multi-constraints optimal regional
pole placement problem is given in Wu and Lee [23] where the closed-loop poles
are placed in a pre-specified region. An approach which is based on the interval
polynomial theory to design a robust pole-placement controller is discussed by Soh
and Betz [22]. Evans [6] proposed the optimization to search an optimal compensator
to robustly stabilize the interval system. A numerical technique to design a robust
stabilizing controller for uncertain interval plants is given in [8]. Rotstein [19]
proposed a mathematical programming method to design a robust controller. The
design using Kharitonov theorem is given by Barmish and Tempo [1], Bernstein [2]
and Chapellat and Bhattacharyya [4]. The stability of polynomials under coefficient
perturbations is studied by Bialas and Garloff [3]. The technique where the robust
design problem is transformed to nonlinear constrained optimization problem is
given by Chen [5].

In our approach the problem of pole region assignment is transformed to the
problem of solving the set of interval algebraic equations [18]. The main objective
is to find the interval solution the sense of the closest radius [17]. This means that
the smallest polytope which contains all possible solutions has to be defined. In other
words, the set of all possible solutions should be imbedded into the minimal polytope
in problem space domain. The desired dynamic of the closed-loop (the reference
model trajectory) is given by dominant pole.

The paper is organized in the following way: in Section 2 the dynamics of the
unmanned testing rocket with uncertain parameters is shown, Section 3 describes
the proposed control of the rocket with uncertain physical parameters, in Section 4
closest radius solution design for the winged body with uncertain physical parameters
is shown, Section 5 shows the simulation results and at the end the conclusions are
given.

2 Pitch Angle Dynamics of Unmanned Testing Rocket with Uncertain Parameters

The problem of robust control design for the linear time-invariant systems with
uncertain parameters has received considerable attention in recent years. The pitch
angle dynamics of the testing rocket belongs to the group of systems with uncertain
parameter because of the changing aerodynamics parameters. In this study only the
longitudinal motion of the rocket will be investigated, i.e., only the transfer function
�(s)
δ(s) , where � is pitch angle and δ is control surface deflection angle is given. The
diagram of forces and moments is shown in Figure 1, where x and z represent the
coordinates of the system, V is the airspeed, u and w are the airspeed components in
x and z coordinates, � is the pitch angle, γ is the angle of attack, Q is the angular
velocity, Fg stands for the gravity force, FL is the lift force, FD the drag force, Fx is
the air pressure force in the direction of x coordinate, Fz is the air pressure force in
the direction of z coordinate, M is the momentum caused by lift and drag, Fc stands
for the control force, cp is the center of pressure, cg is the center of gravity, lcp is
the handle of pressure center and lc is the handle of control force. The nonlinear
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Figure 1 The diagram of
forces and torques.

model of the rocket dynamics is described in [14]. To design the pitch angle control,
the model is linearized in the operating point u = 150 m/s, w = 0, γ = 0, Q = 0 and
� = 0. The following transfer function which describes the dynamics between the
pitch angle velocity � and the angle of the deflection fins δ is obtained:

G(s) = �(s)
δ(s)

= (ν̃1(qqq)s + ν̃0(qqq))(
s2 + µ̃1(qqq)s + µ̃0(qqq)

) (1)

with qqq as the parameter vector which consists of qqq =
[
l; m; S; Iy; lc; lcp; CMα; C̃Lα;

C̃Lδ

]
and where ν̃0(qqq), ν̃1(qqq), µ̃0(qqq) and µ̃1(qqq) stand for:

ν̃0(qqq) = ne
q2S2C̃Lδ

muIy

(
C̃Lαlc + CMαl

)
(2)

ν̃1(qqq) = ne
qSC̃Lαlc

Iy
(3)

µ̃0(qqq) = −qSCMαl
Iy

(4)

µ̃1(qqq) = qSC̃Lα

mu
+ qSCMαlcp

Iyu
(5)

The coefficients of the parameters vector qqq are equal l = 3.386 m, m = 260 kg, S =
0.12566 m2, Iy = 253.1 kgm2, lc = −0.8285 m, lcp = −0.0921 m, CMα = −0.6393, and
the lift coefficients are given as independently varying interval parameters C̃Lα =
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[14.1000; 32.9000], C̃Lδ = [1.8118; 4.2276] and the constant ne = 2
√

2. This implies
the uncertain parameters of the transfer function from Eq. 1 given as

ν̃0(qqq) = [−37.4230; −7.7144]

ν̃1(qqq) = [−31.1822; −14.8214]

µ̃1(qqq) = [0.6482; 1.3278]

µ̃0(qqq) = 15.1133

This means that ν0 = −22.5687, �ν0 = 14.8543, ν1 = −23.0018, �ν1 = 8.1804,

µ1 = 0.9880 and �µ1 = 0.3398.

3 Control of the Rocket with Uncertain Physical Parameters

The goal of the attitude control is to control the pitch angle � by the manipulated
variable δ using the classical compensator with the following control law:

δ(s) = K2 (�r(s) − �(s)) − K1�(s) (6)

where �r stands for the reference signal, with �(s) = s�(s) and the compensator
parameters K1 and K2.

Assuming the proposed controller structure and the controlled process with un-
certain physical parameters the closed-loop characteristic polynomials are obtained
in the parametric form as

p
(
s,qqq,kkk

) =
n∑

i=0

pi
(
qqq,kkk

)
si (7)

where qqq is the uncertain parameter vector and the vector kkk of order m contains
the free design parameters. The uncertain parameter vector consists of interval
parameters qi which are described by its lower and upper bounds q−

i and q+
i . When

the vectors kkk and qqq are unspecified this is called an uncertain interval polynomial. If
the coefficients of the vector qqq belongs to the operating domain Q, i.e., qqq ∈ Q and
if the controller equals kkk = kkko, then polynomial p

(
s,qqq,kkk

)
generates a polynomial

family P
(
s, Q,kkko) = {

p
(
s,qqq,kkko) | qqq ∈ Q

}
.

First of all we have to find the admissible robust stable set of solutions, i.e., the
set of free parameters which stabilize the system. The admissible robust stable set of
solutions contains all kkk = kkko such that the polynomial family P

(
s, Q,kkko) is stable.

Let us assume an uncertain interval polynomial with uncertain physical parame-
ters qqq and unknown free parameters kkk described as in Eq. 7. The admissible stable
set of solutions K contains all kkk = kkko such that the polynomial family P

(
s, Q,kkko)

is stable, i.e., K = {kkk | P(s, Q,kkk) = (s − s1) (s − s2) . . . (s − sn) , Re(si) < 0, i =
1, . . . , n}.
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To find the admissible set of stable solutions for linear time-invariant system
control the Kharitonov criterion [11] is used. The closed-loop transfer function taking
into account the control law from Eq. 6 is given as:

�(s)
�r(s)

= k2 (ν̃1s + ν̃0)

s3 + (µ̃1 + k1ν̃1) s2 + (µ̃0 + k1ν̃0 + k2ν̃1) s + k2ν̃0

and the transfer function which defines the control signal becomes

�(s)
�r(s)

= k2s
(
s2 + µ̃1s + µ̃0

)
s3 + (µ̃1 + k1ν̃1) s2 + (µ̃0 + k1ν̃0 + k2ν̃1) s + k2ν̃0

The interval characteristic polynomial of pitch angle control system is given in the
following form

P (s) = s3 + (µ̃1 + k1ν̃1) s2 + (µ̃0 + k1ν̃0 + k2ν̃1) s1 + k2ν̃0 (8)

with k1 and k2 defined as free design parameters. Defining all four Kharitonov
polynomial and using Routh–Hurwitz criterion the admissible stable set of solutions
is obtained as follows:

Ks =
{

kkk = [
k1; k2

] | µ̃1 + k1ν̃0 < 0, µ̃0 + k1ν̃0 < 0, k2b̃ 0 > 0
}

(9)

In the case of chosen parameters the admissible stable set becomes

Ks = {
kkk = [

k1; k2
] | k1 < 0.0355, k2 < 0

}
(10)

The desired closed-loop polynomial are calculated according to the control law
from Eq. 6 as follows:

D(s) = d3s3 + d2s2 + d1s1 + d0 (11)

d3 = 1 (12)

d2 = µ̃1(qqq) + ν̃1(qqq)k1 (13)

d1 = ν̃0(qqq)k1 + ν̃1(qqq)k2 + µ̃0(qqq) (14)

d0 = ν̃0(qqq)k2 (15)

The desired closed-loop poles are obtained to place one of the poles in the closed
loop zero which is equal to −ν0/ν1, second pole is defined to lie fare on the left side
and is equal to −20 and the third is the dominant pole and is equal to −2. The desired
closed-loop coefficients are than equal to d2 = 22.9812, d1 = 61.5857, d0 = 39.2468.

To find the admissible set of solutions to be as close as possible to the desired poles
for the whole set of interval parameters the next interval matrix equation has to be
solved

⎡
⎣

ν̃1(qqq) 0
ν̃0(qqq) ν̃1(qqq)

0 ν̃0(qqq)

⎤
⎦kkk =

⎡
⎣

d2 − µ̃1(qqq)

d1 − µ̃0(qqq)

d0

⎤
⎦ (16)
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4 Closest Radius Solution of Interval Matrix Equation

The closest radius solution of interval matrix equation [15] means to find the free
design parameters kkk = kkko to place the closed-loop poles of the whole family of
processes as close as possible to the prescribed closed-loop poles.

Let us define the desired characteristic closed-loop polynomial in the form

D (s) = sn + dn−1sn−1 + · · · + d1s + d0 (17)

The problem of closest radius solution is to find the set of all admissible solutions K
of the following interval equalities

pi
(
qqq,kkk

) = di, i = 0, . . . , n − 1 (18)

The controller structure is usually assumed which leads to the closed-loop character-
istic polynomial in the affine parametric form as

di = aaaT
i (qqq)kkk + bi (qqq) , i = 0, . . . , n − 1 (19)

The closest radius solution in the case of time-invariant systems with uncertain
parameters is considered as the problem of the best interval solution for interval
system of linear algebraic equations in Eq. 19 which can be written in interval matrix
form as

ÃAAkkk = b̃bb (20)

with kkk ∈ R
m, the interval matrix ÃAA ∈ R

n×m and the interval vector b̃bb ∈ R
n.

Equation 20 can be also written in the form
(
AAA ± �AAA

)
kkk = bbb ± �bbb (21)

where ÃAA = AAA ± �AAA and b̃bb = bbb ± �bbb . The elements of matrix ÃAA and the elements
of vector b̃bb are described as

ãij = [
aij − �aij; aij + �aij

]
(22)

b̃ i = [
bi − �bi; bi + �bi

]
, i = 1, . . . , n, j = 1, . . . , m (23)

When the element of perturbed matrix ãi, j =0 than it means that ai, j =0 and �ai, j =0.
The set of admissible solution for the interval equation from Eq. 20 which is

defined in the sense of closest radius solution, i.e., the solution within minimal radius
is defined by the following lemma.

Lemma 1 The set of all admissible solutions of the interval matrix inequality is a
polytope ([16]):

K = {kkk | | AAAkkk − bbb |∞≤ ε | kkk |1 +δ} (24)

with | AAAkkk − bbb |∞= maxi, j | ai, jk j − bi |, | kkk |1= ∑m
i=1 | ki | and

∥∥�AAA
∥∥∞ ≤ ε and

| �bbb |∞≤ δ.

The analytical way to find the admissible set of solutions is to solve each row of
the matrix inequality from Eq. 24 separately.
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Lemma 2 The interval matrix inequality can be rewritten in n interval inequalities
as follows:

∣∣aaaT
i kkk − bi

∣∣ ≤ εi
∣∣eeeT

i kkk
∣∣ + δi, i = 1, . . . , n (25)

with |�aaai|∞ ≤ εi and |�bi| ≤ δi and aaai stands for ith row of matrix AAA
(
aaaT

i =[
ai,1; . . . ; ai, j; . . . ; ai,m

])
. The vector eeeT

i ∈ R
m×1 is defined as follows:

eeeT
i = [

f (ai,1) · · · f (ai, j) · · · f (ai,m)
]

(26)

where the diagonal elements are defined as f (ai, j) = 1 if ai, j �= 0 and f (ai, j) = 0 if
ai, j = 0 for i = 1, ..., n, j = 1, ..., m.

Proof The ith row in interval matrix equality (21) is written as
(
aaaT

i ± �aaai
)

kkk = bi ± �bi (27)

The obtain the minimal radius of the interval matrix solutions the infinity norm is
applied to Eq. 27 that is rewritten in a form where nominal terms are on left side and
than yields

∣∣aaaT
i kkk − bi

∣∣ = |�aaaikkk + �bi| (28)

Introducing the Minkowski’s inequality than yields
∣∣aaaT

i kkk − bi
∣∣ ≤ | �aaaikkk | + | �bi | (29)

and by introducing basic relation between vector and matrix norms it follows
∣∣aaaT

i kkk − bi
∣∣ ≤ | �aaai || eeeT

i kkk | + | �bi | (30)

if we define |�aaai|∞ ≤ εi and |�bi| ≤ δi we get Eq. 25. ��

The solution of Eq. 25 on free parameters kkk leads to the optimal region assignment
in the smallest radius sense. The solution is in general a non-convex polytope. The
solution in the form of vertices is very difficult to find. This problem is known as the
enumeration problem. In our approach the solution is find by using the triangular
inequality [11] which results in more conservative solution in the form of convex
polytope which is a subset of the solution defined in Eq. 25.

A simple and effective approach to solve the non-convex problem given in Eq. 25
will be discussed next. Using the triangular inequality | a | − | b | ≤ | a − b | on
Eq. 25 yields

∣∣(aaaT
i − εieeeT

i

)
kkk − bi

∣∣ ≤ δi, i = 1, . . . , n (31)

Let us introduce a weight parameters wp = 1 and wn = −1. Equation 31 is therefore
described in the following form

wp
(
aaaT

i − εieeeT
i

)
kkk ≤ δi + wpbi (32)

wn

(
aaaT

i − εiEEE
T
i

)
kkk ≤ δi + wnbi, i = 1, . . . , n (33)

Each equation from Eq. 25 results in two m-dimensional hyperplane which are
parallel to each other. Equation 33 can be rewritten in a more compact form as

aaaT
e(i−1)·2+ρ

kkk ≤ b e(i−1)·2+ρ
, i = 1, . . . , n ρ = 1, 2 (34)



292 J Intell Robot Syst (2006) 47: 285–297

with

aaaT
e(i−1)·2+1

= wp
(
aaaT

i − εieeeT
i

)
, be(i−1)·2+1 = δi + wpbi

aaaT
e(i−1)·2+2

= wn
(
aaaT

i − εieeeT
i

)
, be(i−1)·2+2 = δi + wnbi

for i = 1, . . . , n.
Equation 34 can be in matrix form written as

AAAekkk ≤ be (35)

with AAAe ∈ R
n·2×m and kkk ∈ R

m.
Equation 35 defines the polytope which describes the admissible regions of all free

parameters. To find the vertices of this polytope we have to find the solutions of all
possible combination of m equations in the whole set of n · 2 equations. The set of
solution has

(n·2
m

)
elements and is given as follows

Ki
min =

{
kkk | aaaT

ei1
kkk = bei1

, . . . ,aaaT
eim

kkk = beim
,

i1 = 1, . . . , n · 2 − m + 1, . . . , im = i1 + m − 1, . . . , n · 2
}

The set Ki
min consists of all possible solutions but only those which satisfy also the

condition AAAekkk ≤ be are extremal solutions known as vertices of the polytope. The
set of vertices which defines the set of admissible solutions is a convex set and is
described as

Kv
min = {

kkk | kkk ∈ Ki
min, AAAekkk ≤ be

}
(36)

The solution using triangular inequality is a very conservative and the solution
does not always exist. When the minimal set Ki

min does not exist, then the solution
should be find be solving the set of equations in Eq. 25 which can be now written as

(
wi,m+1ai,1 − εiwi,1 f (ai,1)

)
k1 + · · · + (

wi,m+1ai,m − εiwi,m f (ai,m)
)

km

≤ wi,m+1bi − δii = 1, . . . , n

with the set of vectors wwwi ∈ R
m+1, wi, j = ±1, i = 1, . . . , n and j = 1, . . . , m + 1. The

dimension of vector wwwi is m + 1, i.e., this means that we have 2m+1 different variation
of this vector. Each row from Eq. 25 results in 2m+1 new inequalities. When we form
the matrix AAAe it belongs to AAAe ∈ R

n·2m+1×m.
The solution is now defined as maximal set Ki

max defined as

Ki
max =

{
kkk | aaaT

ei1
kkk = bei1

, . . . ,aaaT
eim

kkk = beim
,

i1 = 1, . . . , n · 2m+1 − m + 1, . . . ,

im= i1 + m − 1, . . . , n · 2m+1
}

Taking into account Eq. 35 the maximal set of vertices Kv
max is obtained

Kv
max = {

kkk | kkk ∈ Ki
max, AAAekkk ≤ be

}
(37)

To define the design parameter kkko we have to find first the set Kv
min. If it is empty,

i.e., it does not exist than in second step we have to find the set Kv
max. Both sets will

be further denoted as Kv . When the set Kv is defined, the exact value of the design
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parameter should be defined. This calculation depends on the number of elements in
the set Kv . In case when nv = 2m the first momentum is used as follows:

kkko = 1
nv

∑nv

i=1 kkki (38)

where kkki ∈ Kv, i = 1, . . . , nv and with nv as a number of elements in set Kv .
When nv > 2m then the problem is solved by assuming a minimal orthogonal

convex approximation of the solution set. This solution consists only from the
minimal and maximal values at each dimension ki, i = 1, . . . , m where kkk ∈ Kv . If
we define the minimal values as ki = minkkk∈Kv , i = 1, . . . , m and the maximal values
as ki = maxkkk∈Kv , i = 1, . . . , m then we have to find those elements in Kv which have
the minimal or maximal values in the all rest dimensions. This leads to the extremal
approximative solution set defined as Ke which has 2m elements and than again the
first momentum can be used to define ko.

4.1 Closest Radius Solution in the Rocket Case

The closest radius solution in the rocket case is obtained in the following way.
Equation 16 is transformed, by taking into account Eq. 25, into the following three
inequalities:

|ν1k1 + µ1 − d2| ≤ ε1|k1| + δ1 (39)

|ν0k1 + ν1k2 + µ0 − d1| ≤ ε2 (|k1| + |k2|) + δ2 (40)

|ν0k2 − d0| ≤ ε3|k2| + δ3 (41)

where ε1 = �ν1, δ1 = �µ1, ε2 = max(�ν0,�ν1), δ2 = �µ0 and ε3 = �ν0, δ3 = 0.
The minimal approximative solution in this case does not exist Kv

min = {}. This means
that the set is convex and the maximal approximative solution is conformable to the
exact solution of Eq. 41. The maximal approximative set is given as

Kv
max = {kkk1, kkk2, kkk3, kkk4} (42)

where

kkk1 = [−1.5068;−1.0487]

kkk2 = [−0.7162;−1.0487]

kkk3 = [−0.7162;−5.0258]

kkk4 = [−1.5068 − 4.2772]

The polytope can be presented by the minimal set of inequations which are give
in matrix form as

⎡
⎢⎢⎣

−14.8214 0
7.7144 8.1475
0 − 37.4230

−31.1822 0

⎤
⎥⎥⎦kkk ≤

⎡
⎢⎢⎣

22.3330
−46.4724

39.2468
22.3330

⎤
⎥⎥⎦ (43)
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Figure 2 The admissible set of
solutions.
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time responses for free design
parameter kkko.

0 2 4 6 8 10
0

0.5

1

1.5

t

Θ
 (

t)

0 2 4 6 8 10
–3

–2.5

–2

–1.5

–1

–0.5

0

0.5

t

δ 
(t

)



J Intell Robot Syst (2006) 47: 285–297 295

The vertices of this set and the whole admissible set are presented in Figure 2. The
optimal free design parameter is taken as the first momentum of the set Kv

max and it
is given as kkko = [−1.1115; −2.8501].

5 Simulation Study

In the simulation study the comparison of the proposed design method to the
optimization method is shown. The optimization method is based on finding free
design parameter kkkd to minimize the cost function

J =
m∑

i=1

‖yd(t) − y(qqqi,kkk, t)‖2
2 +

m∑
i=1

‖u(qqqi,kkk, t)‖∞ (44)

Figure 4 The whole family of
time responses for free design
parameter kkkd.
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with the constraint ‖u(qqqi,kkk, t)‖∞ ≤ 3 and yd as the desired model reference trajectory
which is defined by the desired closed-loop polynomial in Eq. 13. Figure 3 shows the
whole family of different responses with constant free parameter kkko and uncertain
transfer function parameters with qqqi, i = 1, . . . , 12 where the interval parameters
C̃Lα and C̃Lδ vary equidistantly in the whole range. The bold trajectory is the model
reference trajectory. Figure 4 shows the whole family of time responses in the case
of the optimization design where kkkd = [−1.0714; −2.6312] and the bold trajectory is
the model reference trajectory. The comparison of both approaches shows that our
method results in a solution which is close to the optimal. The algebraic approach
can be very useful and has some advantages especially when we are dealing with a
bigger number of parameters or when the problem is non-convex.

6 Conclusion

In this paper we have shown the new procedure of nearly optimal attitude con-
trol based on closest radius solution for the systems with uncertain time-invariant
physical parameters. The method is based on minimal distance radius solution of
the interval matrix inequality. The proposed algorithm was shown for the pitch
angle control of unmanned air vehicle where some of the parameters are uncertain
due to the weather conditions and height of the flight. It is shown that using the
described analytical design the resulting closed-loop responses are qualitatively very
similar as the results obtained by optimization. The proposed algorithm gives a
framework to design a control for a wide range of different linear time-invariant
processes with uncertain parameters and can be implemented also in the case of non-
convex problems. The algorithm gives the analytical way of finding the nearly optimal
solution of model reference trajectory tracking in the case of general time-invariant
systems with uncertain parameters and can be used when optimization method fails
due to the complexity of the problem.
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